Improved Ensemble Training for Hidden Markov Models using Random Relative Node Permutations
نویسندگان
چکیده
Hidden Markov Models have many applications in signal processing and pattern recognition, but their convergencebased training algorithms are known to suffer from oversensitivity to the initial random model choice. This paper focuses upon the use of model averaging, ensemble thresholding, and random relative model permutations for improving average model performance. A method is described which trains by searching for the best relative permutation set for ensemble averaging. This uses the fit to the training set as an indicator. The work provides a simpler alternative to previous permutation-based ensemble averaging methods.
منابع مشابه
Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملEnsemble Learning for Hidden Markov Models
The standard method for training Hidden Markov Models optimizes a point estimate of the model parameters. This estimate, which can be viewed as the maximum of a posterior probability density over the model parameters, may be susceptible to over-tting, and contains no indication of parameter uncertainty. Also, this maximummay be unrepresentative of the posterior probability distribution. In this...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملIncremental Boolean Combination of Classifiers
The incremental Boolean combination (incrBC ) technique is a new learn-and-combine approach that is proposed to adapt ensemblebased pattern classification systems over time, in response to new data acquired during operations. When a new block of training data becomes available, this technique generates a diversified pool of base classifiers from the data by varying training hyperparameters and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003